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Along with the nonlinearity of local constitutive equations, the limited statistical information on the 
structure of multicomponent composites is a handicap to the exact solution of the problem of determining the 
effective plastic properties of multicomponent composite materials. Therefore, in calculating the macroscopic 
characteristics of composites, one can ether determine their upper and lower bounds (the Khashin-Shtrikman 
fork) [1] or obtain approximate models. One method of allowing for data on the composite structure and 
increasing the accuracy of the calculation model is the expansion of moment functions in a series [2]. This. 
however, requires, a knowledge of the multipoint correlation moments, and this is very difficult to obtain in 
practice [3]. 

Another method of designing a refined model for the macroscopic behavior of a composite involves 
adequate estimation of the binding of the constituents, which depends on the well-founded choice of parameters 
of a reference body [4]. 

In this paper, we propose a variant of statisticM averaging of the equilibrium equations for an 
elastoplastic, isotropic, multicomponent composite to construct its macroscopic constitutive equations. To 
describe the geometrical features of the composite structure, a parameter that characterizes the degree of 
binding of the constituents is introduced into the original constitutive relations. This allows one to describe, 
using the proposed method, the nonlinear hardening of the composite beyond the elastic limit and to calculate 
its effective characteristics. 

The system of macroscopic constitutive equations for an elastoplastic isotropic composite formed by n 
different constituents is determined by statistical averaging of the equilibrium equation in displacements and 
has the form [4] 

(sij) = 2/~*(es)(eo ), (app) = 3K*(es)(epp), (1) 

where 

(1  - " c , , , ( e , )  

, = I  

K" = K (1 - 7)~?- " c s g s  (1 - a ) ~  + a/~* e; 
1 - 7 ,  ' 7/= E K(1 - 7) + T K s ;  e, = (1 - a)~ + ag,(es)  

s = l  

cil and ~ii are the stress- and strain-tensor components; si i = o'{j - (1/3)6{jCpp; eli = e,j - (1/3)6{i~pp: 
#s(es) is the plasticity modulus of the sth constituent, Ks is its bulk modulus (Ks = const); Cs is the volume 
content of the sth constituent; # and K are the reference-body parameters; a = 2(4 - 5u)/[15(1 - u)]; 

7 = (1 + u)/[3(1 - u)]; u = (3K - 2 u ) / ( 6 K  + 2#); es = x/(ekt)s(ekt)s; and e = x/(ekt)(ekl); the angle brackets 
denote averaging over the volumes of the constituents and over the entire volume of the composite. 

The choice of reference-body parameters consists in determining the dependences of ~ and K on 
the moduli /Zs and Ks of the constituents and concentrations cs of the constituents. From dimensional 
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considerations it follows that this dependence should be linear in the moduli of the constituents, and, in 
the general case, it can be written as 

n 11 

/i = K = E Kap,(ca). (2) 
a = l  s = l  

Here ps(c~) are functions that determine the binding of the constituents. The three types of binding of the 
constituents considered in [4] are particular cases of the general formulas (2). Indeed, if pl = I and pa = 0 
(s = 2, 3, . . . ,  n), t hen / i  = / i l  and K = Kl and we obtain a model composite in which the first constituent 
acts as a binding matrix, and the remaining act as individual inclusions. If we set pa = ca (s = 1, 2, . . . ,  n), 
we have 

/i=<g>, I f = ( K >  

and system (2) describes the behavior of a multiphase mixture in which the constituents form mutually 
penetrating frameworks. Finally, if we set Ps = ca (s = 1, 2, . . . ,  m )  and ps = 0 (s = m + lr  m + 2, . . . ,  n).  

m m 

then/ i  = ~ ca~is and K = ~ c~Ks and we obtain a model composite in which the matrix is formed by the 
$ = I  a = l  

first m mutually penetrating constituents, and the remaining (n - m) constituents are individual inclusions. 
Thus, choice of the quanti t ies/ i  and K reduces to determination of the functions Pa(Cs), which are not 

independent and satisfy the relation 
n 

 pa=l, (3) 
a = l  

which follows from formulas (2) if in the latter one sets #1 =/ i2  . . . .  = / i n  =/~ and K1 = K2 = . . . .  /in = K. 
The values of Ps do not depend on the deformed states of the composite constituents and remain unchanged 
during loading from the initial to the last moment of deformation. Since for small elastoplastic strains, the 
structure of the composite material  does not change, i.t is obvious that the values of ps can be determined 
in the elastic deformation region and then used over the entire range of strain. Consequently, an adequate 
description of the elastoplastic behavior of composites requires additional information on their effective elastic 
properties. Therefore, in what follows, we assume that the experimental values of the effective elastic modulus 
of the composite/iexp and Kexp are known. Using the generM Eqs. (1), we set up the desired function 

W $ $ $ ~  ( p s ) = ( I . ~ e - / i e x p ) 2 + ( K * - K e x p )  2 [~ue=#e(1-ae)~e/(1-ae~e] ,  g e K e ( 1 - Z e ) ' T e / ( 1 - T e ? , ) ) .  (4) 

Minimization of this function using condition (3) and relation (2) gives the values of the binding parameters 
Ps, which are then used for the calculation of the elastoplastic behavior of the composite. Here the subscript 
e indicates the values in the region of elastic strains. 

We shall use the above procedure of estimating the binding of the constituents to refine the calculations 
of the elastoplastic deformation of a two-component composite containing individual inclusions. In this case, 
relations (2) take the form 

/ i = / i l ( 1 - - p ) + / i 2 p ,  K = K x ( 1 - p ) + K 2 p ,  p = P 2  (O~<p~<l) ,  (5) 

and the portion of the extension diagram of the matrix material is approximated by the exponential 
dependence 

EI ~ ,  

where a and 6 are tensile stresses and strains, E1 is the Young's modulus of the matrix material, and sl is 
the limit stress in the portion of the tensile diagram for the material matrix (the yield point). 

The binding parameter  p is obtained by numerical solution of system (4) and (5). Next, the elastoplastic 
behavior of the composite is calculated by formulas (1) with allowance for relations (6). In each step of 
macroscopic elastoplastic strains, the values of es are found numerically on a computer by the method of 
successive approximations. 
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The calculations were compared with the known model matrix-spherical inclusions (p = 0) and with 
experimental data on extension of specimens of epoxy resin filled with glass microspheres [5]. The behavior ol" 
the inclusions was considered ideally elastic. The glass volume content is c2 = 0.24. The experimental value 
of the effective Young's modulus is Eex p = 6129 MPa. The calculated values of the quantities are as follows: 
El = 3069 MPa, E2 = 73,545 MPa, ut = 0.45, u2 = 0.21, st = 69 MPa. The calculated value of the binding 
parameter is p = 0.264. 

In Fig. 1, the results of calculations by formulas (1), (5), and (6) (curve 1) are compared with the 
experimental strain curve for epoxy resin filled with glass microspheres [5] (curve 2) and with the results of 
calculation by the model matrix - -  spherical inclusions (p = 0) (curve 3). 

Thus, allowance for additional information on the effective elastic properties of a composite refines 
considerably the model of inelastic deformation and gives better agreement between experimental and 
theoretical data. 

Disoriented reinforcement of composites by short fibers or particles leads to macroscopic anisotropy, 
and, hence, the proposed model is inapplicable in this case. 

To describe adequately randomly reinforced composites by statistical averaging of the system of 
equilibrium equations, one should take into account the shape of inclusions and the statistical distribution of 
their orientations in the matrix. If the shapes of the fibers or particles are approximated by ellipsoids with a 
specified ratio of the semi-axes, the constitutive equations of macroscopic elastoplastic deformation for such 
a composite have the form [6] 

where 

(aij) = E*ikt(e,~,/)(e~t),  

E*jk I -- 2pmIi jk l  + 6ij6klAm + Cf(2[p]Iijpq + 6ij6pq[A])apqkl; 

a i j k l  ( I i j p q  q" P t i j p q ) - l ] ~ q k i ;  R i j k l  (CfCm) - 1  Z " /')(0) " .~  --- ,.s~.~ i j k l ,  
s = l  

(7) 

piO) 1 
= + Z ( , )  e(,)  

i j k l  = ' a i j k l  

QO) D(,) ~-x. 
ijkz = ( Iijkt + ~ ijktJ , 

u_~_ r  x . 
1 +um ''ppkr~'J' 

S(S) ijkl are the Eshelby-tensor components written in the laboratory coordinate system of ellipsoids of the sth 
direction, [g] = g / -  gin, A = K - (2/3)p, cLm are the volume contents of the inclusions and the matrix, c~ 
is the volume content of ellipsoids of the sth direction, the subscript m refers to the matrix material and the 
subscript f to the inclusion material. 

From relation (7) it follows that the effective tensor of the plasticity moduli E~jkt generally depends on 
the plastic-shear moduli and the bulk moduli of the matrix and inclusion materials, on the fiber concentration. 
and also on the shape of the ellipsoidal inclusions, which is characterized by the ratio of the semi-axes of the 
ellipsoids al, a2, and aa: 

Ei~kl = Ei~kt(Pm,f(  e ), Kin , f ,  c/, ~1, ~2). 

As a rule, the filler particles or fibers have a significant spread (up to 50%) of the relative sizes, which 
cannot be classified by orientations in designing a composite. Therefore, to obtain refined calculations by 

. $  
the model of elastoplastic deformation of a composite, it is reasonable to estimate the effective values of the 
parameters ~1,2 = al ,2/aa invoking additional information on the elastic properties of the composite. 

We set up the desired function for the parameters ~l and ~2: 

W(~1,~2) = ~ (E~;kl k'lexp~2 
- -  LJi jk l  ] �9 (s) 

i,j.Ll 
~exp  Here "ij~t are experimental values of the effective tensor of the elastic moduli. 

Minimization of the desired function W gives a system of equations for determining the parameters ~1 
and ~2, which can then be used in relations (7) to calculate elastoplastic properties. 
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To illustrate the proposed method of individual prediction, we consider the case of equiprobable 
orientation of ellipsoidal inclusions in the composite (cl = c2 . . . . .  c , ) .  In this case, relations (7) take 
the form 

(sii) = 2#*(em,f)(eij) ,  (fii~) = 3g*(em, l ) (e i i ) ,  (9) 

where #* = , m + [ # l c / a / ( c , n + c f a ) ,  K* = K m + [ K l c I T / ( c m + c I T ) ,  7 = a -3f l ,  and a = (1/15)(3Qpqpq-Qppqq) 
and • = (1/15)(Qpqpq - 2Qppqq) are invariants of the tensor Qijkl. 

Equations (9) were used to calculate the elastoplastic properties of composite specimens fabricated 
from a sintered aluminum powder (SAP) - -  an aluminum matrix with randomly distributed particles of 
aluminum oxide A1203 (14%) formed by sintering of the aluminum powder. These particles are plates w.ith 
thickness h = 0.055 pm and linear dimension 0 ~< L ~< 16/~m in plan [7]. The oxide particles are approximated 
by ellipsoids of revolution (flattened ellipsoids) for which the ratio of the semi-axes is ~ = hL -1. In this case, 
the Eshelby tensor components are expressed in terms of elementary functions, and the calculation of the 
invariants a and 7 is readily performed on a computer [8]. 

The tensile diagram of the composite considered is plotted by the formula 

(fill)-- 9K'p* 3K* + ~* (ell). (i0) 

The portion of the tensile diagram of the aluminum matrix is approximated by the exponential dependence 
of [4], for which the function #re(e) has the form 

2Gmey~ (11) km ( 1 - e x p (  km ) ) "  , , . , ( e )  = 

Here Gm is the shear modulus and km is the limit shear stress in the given region (the yield point). The 
inclusion material (high-strength and high-modulus aluminum oxide particles) is considered ideally elastic 
over the entire deformation process: # f  = coast. 

The calculated values are as follows: E m =  71 MPa, E 1 = 2500 GPa, Vm = 0.34, v I = 0.2, k m =  25 MPa 
and cf = 0.14. The experimental value of the effective Young's modulus is Eexp = 1750 GPa. The calculated 
value of the parameter ~ = 0.0035. Equations (9)-(11) were solved numerically on a computer by the method 
of successive approximations. 

Figure 2 shows a comparison of the theoretical tensile diagrams of SAP calculated by formulas (9)-(11) 
with the experimental results of [9] [the curves correspond to the calculations by formulas (9)-(11), and the 
points correspond to the experimental data]. 

Thus, allowance for additional information on the elastic properties of a composite allows one to 
estimate with sufficient accuracy the subsequent elastoplastic behavior of the composite. 
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